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Memetic algorithms are used to optimize the expensive target
performance. The evaluation of the current population number is
conducted by searching in the previous generations and preserving the
values by the memetic algorithm. A significant number of generations
are required to find the optimal value of the objective function in rule-
based systems. The learning classifier system is one of the methods of
generating value and classification for law. Each rule includes a set of
properties. The function of the learning classifier systems is based on the
genetic algorithm that it is not possible to search and save the previous
steps in order to find a better solution to the problem. In this article, the
memetic algorithm is used to improve and optimize the learner classifier
system. In the proposed system, the memetic algorithm is used to create
a population to improve the learning classifier system in the state space.
The efficiency, convergence speed, and standard deviation of the
proposed method are revealed using the implementation. The results
indicated that the proposed hybrid method of replacing the memetic
algorithm in the learning classifier system can significantly speed up the
system and improve the quality to maintain better rules according to the
search of previous generations.
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1) Introduction

In 1975, John Holland published a seminal book on genetic algorithms in the context of adaptation in
natural and artificial systems, which later became widely recognized. In 1976, Holland conceptualized
the genetic algorithm as a cognitive system and provided a detailed description of what is recognized as
the first Learning Classifier System (LCS) (Compiani et al., 1990). He subsequently introduced this
framework in his work on adaptive cognitive systems. The algorithms of this system, referred to as a
cognitive system, were designed as modeling tools to be applied to real and dynamic systems through a
population of human-interpretable rules. The objective of the cognitive system was to develop a set of
online machine-learning rules capable of adapting to the environment based on feedback, reward, and
reinforcement learning, thereby producing behavior consistent with the real system. However, this initial
implementation was considered overly complex and yielded inconsistent results (Dorigo, 1995a).

Beginning in the 1980s, Kenneth De Jong and Stephen Smith proposed a different approach to rule-
based machine learning, in which learning was viewed as an offline optimization process rather than an
online adaptation process. This new perspective more closely resembled a standard genetic algorithm
that evolved independent rule sets (Riedl et al., 2022). Since then, LCS methodologies, inspired by the
online learning framework and introduced by Holland at the University of Michigan, have become
known as the Michigan-style LCS, while those inspired by Smith and De Jong at the University of
Pittsburgh are referred to as the Pittsburgh-style LCS. In 1986, Holland developed what can be
considered the standard Michigan-Style Learning Classifier System for the following decade (Dorigo,
1995b).

Interest in LCSs was revived in the mid-1990s due to two major developments: the advancement of
reinforcement learning algorithms and the introduction of a Michigan-style architecture by Stewart
Wilson (Wilson, 1995).

LCSs represent a class of rule-based machine learning methods that integrate a genetic algorithm
component with supervised, reinforcement, or unsupervised learning mechanisms (Nakata et al., 2014).
LCSs aim to identify sets of context-dependent rules that collectively encode predictive knowledge.
They support behavior modeling, classification, data mining, regression, function approximation, and
game strategy formulation, enabling complex solution spaces to be decomposed into smaller and more
manageable subspaces (Pakraei & Mirzaie, 2018). Using rule-based agents, LCSs attempt to model
complex adaptive systems to construct artificial cognitive systems (Booker et al., 1989).

Researchers have employed LCSs to improve performance in classification tasks and games. In this
paper, a memetic-algorithm-based LCS is proposed, in which a memetic algorithm is used to enhance
both the solution quality and the convergence speed of the LCS for rule-based problem solving. In the
proposed system, a memetic algorithm exploits the dissemination of the final population results at each
stage, combined with local search, to generate and achieve improved optimal values in subsequent
generations. This algorithm has been applied to several tasks and has been shown to be effective in
reducing the number of generations required for the convergence of LCS, while also achieving
significant improvements in solution quality.

2) Research Background

Learning Classifier Systems

LCSs constitute a specific class of genetic-based machine learning approaches. An LCS formalizes the
core elements of both classical and modern evolutionary algorithms. For simplicity, this discussion
focuses on the Michigan-style architecture. In these systems, the matching operation enables online
learning and adaptation to a dynamically changing environment. The model is assumption-light, making
only limited hypotheses about the environment or the relationships among data patterns. Consequently,
LCSs are capable of discovering and distributing complex and heterogeneous patterns without relying
on prior domain knowledge. As a result, a set of related and potentially conflicting rules is produced,
which can be interpreted as a form of fuzzy prediction (Hurst & Bull, 2001).
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Another important characteristic of LCSs is their stochastic learning mechanism, which avoids the
limitations of deterministic learning when addressing large and complex non-deterministic problems.
Through both implicit and explicit pressures, the rule population simultaneously optimizes for generality
and simplicity in a multi-objective manner. This selective pressure is unique to LCSs. More effective
rules tend to appear more frequently in match sets, increasing their likelihood of being selected as
parents and propagating their structures to offspring rules (Sigaud et al., 2009).

A major advantage of LCSs lies in their interpretability for data mining and knowledge discovery.
By extracting knowledge from the dominant rule population, LCSs provide effective strategies for
identifying important features and underlying relational patterns. These strategies are applicable to
flexible programming paradigms, single- or multi-step problems, supervised, reinforcement, or
unsupervised learning, binary or multi-class classification, discrete and continuous attributes, as well as
balanced or imbalanced datasets (Orriols-Puig & Bernado-Mansilla, 2008).

Despite these strengths, LCSs also suffer from several limitations. First, software availability is
limited: only a small number of LCS implementations exist, and they are often not designed to be user-
friendly or easily accessible to machine learning practitioners. Second, although LCSs are inherently
interpretable, users are often required to analyze a large number of rules to fully understand the learned
model. Third, there is relatively little theoretical work providing formal convergence proofs for LCSs,
largely due to their inherent complexity and the stochastic nature arising from multiple interacting
components (Tavana et al., 2023). Furthermore, despite explicit and implicit pressures toward
generalization, LCSs may still suffer from overfitting due to excessive connectivity. LCS execution also
involves a large number of parameters that must be considered or optimized. Aside from the maximum
rule population size and the maximum number of learning iterations, many parameters are domain-
dependent, making parameter optimization particularly challenging (Sigaud et al., 2008).

For the reasons outlined above, LCS algorithms are rarely considered in direct comparison with
other machine learning approaches:

1. They constitute a complex algorithmic framework.

2. Rule-based modeling represents a paradigm that differs substantially from most
conventional machine learning methods.

3. Software implementations of LCSs are relatively uncommon.

From a computational perspective, LCSs are expensive (Shi et al., 2023). For simple or linearly
separable learning problems, the use of LCSs is generally unnecessary. Instead, LCSs are best suited for
complex problem spaces or domains in which little prior knowledge is available (Butz, 2002).

The architecture and components of a LCS are inherently variable. An LCS can be viewed as a
device composed of multiple interacting components. These components may be added, removed, or
modified, and existing algorithmic building blocks can be adapted or replaced to meet the requirements
of a specific domain. This flexibility enables LCSs to operate effectively across a wide range of problem
domains. Consequently, LCS theory can be adapted to many application areas that require machine
learning solutions (Dorigo, 1995c¢).

In an LCS, the source environment consists of the data from which the system learns, typically
provided as an online training dataset. The system includes independent variables, where each training
instance comprises a set of features, and dependent variables representing target endpoints, such as class
labels, actions, phenotypes, or predictions. Feature selection is an integral component of LCSs; therefore,
not all training features are necessarily informative. The set of feature values for a single instance is
referred to as the state. For simplicity, a domain with Boolean or binary features and a binary class is often
assumed. In Michigan-style systems, learning is performed incrementally using a single instance from the
environment at each learning cycle. In contrast, Pittsburgh-style systems employ batch learning, where the
entire training dataset is evaluated by the rule set at each iteration (Shankar & Louis, 2005).

One of the most time-consuming components of an LCS is the matching process. The first step in
the LCS learning cycle involves obtaining a single training instance from the environment and
presenting it to the population for matching. In the second step, each rule in the population is compared
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with the instance to determine whether it matches. In the third step, matching rules are transferred to the
action set. In the fourth step, under supervised learning, the action set is divided into correct and incorrect
condition sets (Garate-Escamila et al., 2020). If, at this stage, no rule is able to classify the instance,
such as when the population is empty, a covering mechanism is applied. In the sixth step, the parameters
of each rule in the action set are updated to reflect the new experience obtained from the current training
instance. In the seventh step, a sharing mechanism is typically applied. Subsequently, in the eighth step,
the LCS employs an elitist genetic algorithm in which two parent classifiers are selected based on the
principle of survival of the fittest. Parent selection is performed from the match sets used during
competition. The final step in a general LCS learning cycle is enforcing the maximum population size
constraint (Santos et al., 2009).

These steps are repeated for a user-defined number of training iterations or until predefined
termination criteria are satisfied. Upon completion of training, the rule population typically consists of
a compact set of experienced rules, with weak, redundant, or inexperienced rules removed (“Introduction
to Optimization,” 2004). The output rule compaction mechanism of an LCS is then applied to the
classified population to construct predictions for unseen data. Individual LCS rules collectively form
the predictive model, and their ranked parameters can be manually inspected for interpretability and
analysis (“The Binary Genetic Algorithm,” 2004).

Memetic Algorithm

The memetic algorithm has been demonstrated as an effective approach for solving optimization
problems, particularly in exploring large and complex search spaces in an adaptive manner guided by
biologically inspired evolutionary mechanisms, such as reproduction, crossover, and mutation.
Algorithms derived from this paradigm are grounded in Darwin’s theory of survival of the fittest and
operate based on stochastic search processes. Memetic algorithms work with a large number of
candidate solutions, which are initially generated at random (Tseng et al., 2007).

The underlying objective is to maximize adaptation by selecting the most suitable individuals from
the population and exploiting their memetic information during mating operations to generate a new
population of solutions. Numerous fundamental variants of the memetic algorithm have been developed;
however, the LCS implemented in this study adopts a simple memetic algorithm, as described in the
literature (Bereta, 2019).

Memetic algorithms offer several advantages over traditional optimization techniques. In particular,
they do not require gradient information or functional derivatives and rely solely on performance
evaluations. Memetic algorithms are capable of identifying global optima because they search multiple
candidate solutions rather than a single point, thereby enabling effective exploration of design spaces
that include combinations of continuous and discrete variables. Moreover, instead of producing a single
solution, memetic algorithms provide decision-makers with a set of acceptable optimal solutions from
which the most appropriate one can be selected. The probabilistic nature of memetic algorithms helps
prevent premature convergence to local optima (Cotta & Moscato, 2003).

One of the main drawbacks of memetic algorithm techniques is that, although they typically exhibit
strong initial convergence as global optimization methods, their performance may significantly slow down
once an optimal region of the solution space has been identified. To address this issue and improve
convergence, elitism is commonly employed. Elitist evolutionary algorithms generally achieve better
convergence behavior than non-elitist counterparts (Zhang & Xing, 2018). In general, elitism preserves
the best current solutions and transfers them to subsequent generations. In this work, elitism is
implemented by directly carrying the best-performing solution of the population into the next generation.

In this paper, to further enhance the convergence of the LCS, a memetic algorithm incorporating
both population-based evolution and local search is employed. This approach enables the identification
of improved solutions relative to the current population and ensures their propagation to subsequent
generations. As a result, the efficiency of the LCS is significantly increased (Zeng et al., 2018).

The proposed hybrid approach is developed by integrating the LCS framework with a memetic
algorithm. By combining these two methodologies, the advantages of both are leveraged to produce a
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fast and robust hybrid optimization strategy. The form of the memetic algorithm used in this study can
be summarized as a simple binary-encoded memetic algorithm, employing roulette-wheel selection,
uniform crossover, an elitist replacement strategy, and local search.

3) Research Methodology

Memetic Learning Classifier System

In this paper, a hybrid LCS is considered, which is based on integrating a conventional memetic
algorithm into the LCS framework. In the proposed system, the efficiency of the LCS is enhanced by
exploiting the capabilities of the memetic algorithm. By embedding a memetic algorithm within the
LCS, the strengths of both approaches are combined to form a robust and fast hybrid optimization
method. In the proposed system, the memetic algorithm is employed to guide the search toward optimal
solutions. Figure 1 illustrates the flowchart of the proposed memetic-based LCS.

The procedure executed in the proposed algorithm involves the following components and
processes: environment, rules, classification, population, matching, covering, parameter updating,
fitness and accuracy evaluation, learning, hypothesis formation, rule discovery, memetic algorithm
execution, and deletion.

The core idea of LCS is that the system interacts with the environment through both a detector and
an effector (Parts 1 and 9). The system input, which enters through the detector (Part 2), is encoded in
the form of messages and transferred to the population module as a message list. Within this list, if-then
rules, serving as classifiers, are applied. The outcomes of classifier actions are re-encoded and written
back into the message list. These newly generated messages (Parts 3, 5, 6, and 7) may trigger the
activation of new rules or generate signals that prompt the effector to perform actions. The reward or
payoff (Part 8) resulting from the executed actions is generalized and assigned to the rule population
through the credit assignment mechanism. Subsequently, the rule discovery system (Parts 10 and 4) is
responsible for identifying new rules and incorporating them into the classifier population.

Various implementations of LCSs exist; however, they generally share four fundamental functional
components that define the system architecture:

1. A population of classifiers that represents the current knowledge of the system.

2. A performance component that manages the interaction between the environment and the
classified population.

3. A reinforcement component, referred to as fitness or credit assignment, which distributes
the reward received from the environment among different classifiers.

4. A discovery component that employs various operators to discover improved rules and
enhance existing ones.

Figure 1) Diagram of the Proposed Hybrid Method
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These modifications to the core components provide a fundamental framework known as a LCS. In
this context, discovery via a memetic algorithm refers to the identification or introduction of rules that
do not simultaneously exist in the current population and are obtained through local search combined
with the preservation of the previous population. Ideally, newly generated rules are able to receive higher
rewards than existing ones. Traditionally, this process has been conducted using a genetic algorithm. In
the proposed approach, however, the memetic algorithm is employed as a computational search
technique that evolves a population of individuals each representing a potential solution to a given
problem through the incorporation of local search. In this system, the memetic algorithm is conceptually
utilized as a core component of the LCS.

Memetic algorithms are inspired by ideas borrowed from nature. Drawing on natural selection
theory and local search for evolutionary improvement, four principal analogies are employed:

1. A code used to represent the genome or condition.
2. The use of genome combination to represent an action.

3. A selection process for survival, in which rules with superior performance have a higher
probability of reproduction and of transmitting genetic information to the next generation
based on local search.

4. The application of genetic operators to discover new rule-organisms by selecting simple
conditions from a pre-existing population.

The following steps are obtained through a single iteration of a simple genetic process:
1. Evaluation of all rules in the current population.
2. Search for and selection of parent rules from both the current and preserved populations.
3. Transformation of rules by applying crossover operators to the selected parents.
4. Addition of newly generated rules to the next generation.
5

Deletion of a sufficient number of rules from the next generation to maintain a fixed
population size N.

The main idea of the proposed system is to replace the existing set of variables with a new set that
yields a quantitatively improved objective function value. By incorporating local search and preserving
the population from the previous stage, the proposed approach can lead to the improved convergence of
the LCS. In this method, the memetic algorithm guides the search process and the evolution of the
population toward optimal regions of the solution space, enabling the system to identify better optima
across successive generations. It is worth noting that while the proposed system transfers the improved
solution to the next generation, other individuals in the population maintain diversity, thereby preventing
premature convergence.

In the next section, the rule-generation mechanism of the proposed system will be presented to
demonstrate that the approach can significantly improve both the convergence speed of the LCS and the
quality of the resulting solutions.

4) Findings

Performance of the Proposed System

To demonstrate the computational approach of the memetic-algorithm-based LCS, standard benchmark
experiments were employed, and the obtained results were compared with those of a conventional
memetic algorithm. All experiments were conducted using identical memetic algorithm parameters: a
crossover probability of 80%, a mutation probability of 0.3%, and the same population size. The
memetic-based LCS was evaluated under two experimental settings, consisting of 5,000 and 10,000
execution steps. In each case, different populations were generated randomly. To ensure result
consistency and reproducibility, identical random number sequences were used within the algorithm.

Several factors must be considered when constructing a LCS. The final classified population is
evaluated based on the following criteria:
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Performance, that is, the evolved solution derived from the rule set.
Scalability, measured in terms of learning time or system size as the problem complexity increases.

Adaptability, referring to the ability of online learning systems to adjust to rapidly changing
conditions.

Temporal efficiency, defined as the time required by the learning system to reach a satisfactory
solution.

A significant portion of the experimental focus was devoted to optimizing system performance. The
results indicate that the proposed memetic-algorithm-based LCS achieves substantially better solutions
across all test cases within a limited number of generations. The training coverage and training accuracy
obtained from experimental runs in the maze game environment for the proposed system are presented
in Table 1.

Table 1) Performance Statistics

Iterations Training Accuracy Test Accuracy Training Coverage Test Coverage
5000 0.96875 — 1 —
10000 1.00000 — 1 —

Table 2 reports the population parameters defined for 5,000 and 10,000 iterations of the memetic-
based LCS. The minimum number of steps represents the shortest path from the starting point to the
goal, while the maximum number of steps reflects the longest agent trajectory from the start to the target.
The values in Table 2 indicate the number of steps obtained during the experiments.

Table 2) Population Characteristics

Iterations Macro Population Size Micro Population Size Overall Measure
5000 228 1000 0.5368333333333338
10000 209 1000 0.527166666666667

Table 3 presents the characteristics of the action and movement performance set of the memetic-
algorithm-based LCS. The numerical values in the table represent the number of agent rules required to
reach the target state.

Table 3) Action Set Characteristics

Iterations Ao A Co Ci C. Cs
5000 561 556 470 402 348 442
10000 564 516 443 421 418 475

In this problem formulation, a starting point, a target point, and a set of obstacles are defined within
the environment. The agent begins its movement from the starting point and navigates using four
possible actions—up, left, down, and right—based on the governing problem-solving method, which in
this case is the LCS. As the agent operates within its environment, it encounters obstacles and must
navigate in such a way that it reaches the target without colliding with any obstacles.

Figure 2) Sample Maze Environment in Which “A” Denotes the Agent, and Black Squares
Represent the Obstacles
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The size (dimensions) of the maze environment is defined conventionally according to the problem
under consideration. The encoding of classifiers for the agent navigation problem in the maze
environment is illustrated in Figure 3.

Figure 3) Classifier Encoding for the Agent Navigation Problem in the Maze

Condition Action

G |G| G| G : Ao | A

L—— West 0 0 Move North
South 0 1 Move East
North 1 0 Move South
East | 1 Move West

In this encoding scheme, the value “1” in the condition part indicates the presence of an obstacle at
the corresponding position. For example, the condition 0010 indicates that there is an obstacle to the
south of the agent, while no obstacles exist to the north, east, or west. In this case, the agent moves
toward the north (00).

Comparison of Results

As the number of rules increases, the agent reaches the target more quickly and achieves better
performance. Table 4 presents the accuracy results obtained from 5,000 and 10,000 iterations of the
memetic-algorithm-based LCS in the given environment, from the starting point to the goal. The
minimum value represents the smallest number of agent rules required in an iteration, while the
maximum value indicates the largest number of agent rules needed to reach the target in the
environment. In this study, the maximum number of agent rules in the environment is set to 10,000. This
is because, in the memetic-based LCS, the agent does not become trapped in loops or dead ends.

Table 4) Set Accuracy

Iterations Ao Al Ro R: R> Rs
5000 475.2324 474.8925 382.3326 331.2291 284.4018 360.2260
10000 488.4703 454.4712 367.0733 354.5223 349.6856 396.8692

Table 5 reports the execution time of the system for 5,000 and 10,000 iterations in the given
environment.

Table 5) Execution Time

Iterations | Evaluation | Selection | Sharing [ Deletion | Matching | Total |




9 Engineering Management and Soft Computing, Vol. 12, no.1, 2026
5000 0.0032 0.0011 0.0038 0.0021 0.0219 0.0449
10000 0.0069 0.0023 0.0088 0.0093 0.0485 0.1034

The results obtained in the experimental environment indicate a clear superiority of the memetic-
algorithm-based LCS, particularly with fewer iterations. The proposed system demonstrates better
performance in more complex environments, leading to improved solutions and superior overall results.
The findings show that incorporating the memetic component into the LCS improves the average
solution quality and significantly reduces the number of generations required to obtain an acceptable
solution.

Figure 4) Convergence Speed of the Learning Classifier System Compared with the Memetic
Learning Classifier System
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It should be noted that the standard deviation of the test results obtained using the memetic-
algorithm-based LCS is small.

Figure 5) Standard Deviation of the Learning Classifier System and the Memetic Learning
Classifier System
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This characteristic is particularly important for applying the algorithm to real-world problems,
where cost and time constraints prohibit repeated execution of computationally intensive optimization
procedures. The execution time and set accuracy results for the memetic-algorithm-based LCS presented
here indicate that obtaining an appropriate optimal solution does not require repeated runs of a powerful
optimization process.
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5) Conclusions and Future Work

The proposed hybrid LCS is based on the integration of a LCS with a memetic algorithm. In the proposed
framework, the efficiency of the LCS is enhanced by exploiting the local search capability and
population memory preservation mechanisms of the memetic algorithm. In this hybrid approach, a
memetic algorithm is embedded within the LCS to improve its convergence behavior during the search
process.

The performance of the proposed method has been evaluated in a limited manner using several
criteria, including performance statistics, population characteristics, dataset features, classification
accuracy, and execution time. For each experimental scenario, 5,000 and 10,000 runs were conducted,
where each run was initialized with a randomly generated population. The experimental results indicate
that integrating a memetic algorithm into the LCS can play a significant role in improving both the
convergence speed and the quality of the obtained solutions.

The application of the proposed system to selected real-world problems is currently under
investigation by the authors. In addition, ongoing research focuses on developing extended versions of
the proposed approach to address high-dimensional problem settings. It is anticipated that when the
dimensionality of the problems increases substantially, certain modifications to the algorithmic structure
will be required. In the present study, the memetic algorithm has demonstrated that local search and
population memory preservation can be highly effective in improving the convergence of LCSs;
however, the applicability of other types of LCSs may also be considered in future work.
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